| SALMONID
SPECIES | STREAM
NAME | TRIBUTARY
TO: | FISH USE | EXTENT (RM) | SOURCE | BARRIERS | COMMENTS | |---------------------|----------------------|-------------------|------------------------|------------------------------|---|---|---| | Sockeye | Okanogan
River | Columbia
River | Known | 0.0 - 73 /
Canada border | Gustafson et al. 1997 (NMFS
Sockeye Status Review rpt.);
Chapman et al. 1995 (Status of
Sockeye in the Mid-Columbia
Region). | Adult upstream migration may be delayed by high water temperatures (>21.1°C; thermal barrier) as much as 3 weeks in some years in the lower Okanogan River during July and August; a diversion dam 4 miles upstream of Oliver, B.C. | The Okanogan River serves as a migratory corridor for adult and juvenile salmon. Okanogan River sockeye spawn in the Okanogan River upstream of Lake Osoyoos in the four-mile accessible reach to the diversion barrier. After emerging from the gravels in late March, fry begin to move downstream to rear in Lake Osoyoos. Juvenile lake residence is usually 1 year before migrating seaward in their second year of life (Chapman et al. 1995, pp. 59-87). | | Sockeye | Okanogan
River | Columbia
River | Potential/
Historic | 0.0 - 73 /
Canada border | Gustafson et al. 1997 (NMFS
Sockeye Status Review rpt.). | | Historically, sockeye salmon aret thought to have utilized Lake Okanangan, Skaha, and Osoyoos in the Okanogan River Basin for juvenile rearing. Between 1939 and 1943 all returning sockeye salmon were trapped at Rock Island Dam and relocated to Lakes Wenatchee or Osoyoos or to one of 3 national fish hatcheries (Leavenworth, Entiat, and Winthrop) for artificial propagation. | | Sockeye | Similkameen
River | Okanogan
River | Known | 0.0 - 8.8 / Enloe
Dam | T. Scott (Oroville-Tonasket
Irrigation District); Swan et al.
1994; Fryer, J. (PhD. Thesis on
Columbia River Sockeye, 1995);
S. Bickford (Douglas County
PUD); K. Cooper (USFS). | Enloe Dam (RM 8.8). | The Similkameen River is used by adult sockeye as a short-term, cold-water refuge during upstream migration through the Okanogan River. Behavior is very similar to adult sockey's behavior at the confluence of the Columbia/Okanogan rivers, where the Columbia River is frequently 6-8 degrees celcius cooler than the Okanogan River during July and August (S. Bickford, Douglas County PUD, Swan et al. 1994). Sockeye adults observed in proximity of the WDFW fish hatchery (RM 0.25; K. Cooper, USFS). T. Scott harvested sockeye below Enloe Dam in years past. | | Sockeye | Similkameen
River | Okanogan
River | Potential/
Historic | 0.0 - 8.8 / Enloe
Falls | Tom Scott, Oroville-Tonasket
Irrigation District; Fryer, J. (PhD.
Thesis on Columbia River
Sockeye, 1995). | Enloe Falls (RM 8.8). | Access by sockeye up to Enloe Falls historically. | | Steelhead | Aeneas Creek | Okanogan
River | Presumed | 0.0 - 0.5 | C. Fisher (CCT), N. Wells (USFS); H. Bartlett (WDFW). | RM 0.5 State Hwy. 7 box culvert; RM 1.25, natural falls | (1) Good water quality for rearing—some of the best of the tribsto the Okanogan River (C. Iten, WDFW). (2) Probably flow limited (C. Fisher, CCT) | | Steelhead | Aeneas Creek | Okanogan
River | Potential/
Historic | 0.0 - 1.25/
natural falls | C. Fisher (CCT), N. Wells (USFS); H. Bartlett (WDFW). | RM 1.25, natural falls | (1) Good water quality for rearing—some of the best of the tribsto the Okanogan River (C. Iten, WDFW). (2) Probably flow limited (C. Fisher, CCT) | | Steelhead | Antoine Creek | Okanogan
River | Potential/
Historic | 0.0 - 11.5 | K. Cooper (USFS) | Currently, alluvium deposits at the mouth; currently, dewatering/"near dry" instream conditions during summer and early fall downstream of a cement water diversion at RM 1.0 (Entrix and Golder 2001); a half-mile reach of natural falls and gradients >25% beginning at RM 11.5, continuing to 12.0 Fancher Dam. | In normal and low water years, alluvium deposits at the mouth preclude fish passage into Antoine Creek. Flows in Antoine Creek are stongly influenced by natural water year conditions and withdrawals; low flows from natural conditions and private water withdrawals limit current use (K. Cooper, USFS). Upper extent is represented by waterfalls and steep gradients which begin at RM 11.5 (Entrix and Golder 2001). | | Steelhead | Bonaparte
Creek | Okanogan
River | Known | 0.0 - 1.0 | C. Fisher (CCT) | RM 1.0, natural falls | The natural falls at RM 1.0 is a full barrier to fish passage and represents the upper extent of upstream fish passage (C. Fisher, CCT). In Spring 2001, 12 adults and 4 redds were observed downstream of the Hwy. 97 bridge. In August 2002, juveniles were observed in the same reach (C. Fisher, CCT). | | Steelhead | Bonaparte
Creek | Okanogan
River | Potential/
Historic | 0.0 - 1.0 | C. Fisher (CCT) | RM 1.0, natural falls | It is possible that steelhead can pass upstream of the natural falls at RM 1.0 at some flows (C. Fisher, CCT). | | SALMONID
SPECIES | STREAM
NAME | TRIBUTARY
TO: | FISH USE | EXTENT (RM) | SOURCE | BARRIERS | COMMENTS | |---------------------|--------------------|-------------------|------------------------|--|---|---|---| | Steelhead | Chiliwist Creek | Okanogan
River | Presumed | 0.0 - 0.6 | K. Cooper (USFS); H. Bartlett
(WDFW); N. Wells (USFS); C.
Fisher (CCT). | Partial barrier at the State Hwy. 97 culvert (RM 0.5); full barrier at the diversion dam (RM 0.6); gradients upstream of the diversion dam probably naturally preclude upstream fish passage further into the drainage. | Downstream from the partial barrier at the Hwy. 97 stream crossing, the stream has been channelized (RM 0.0 - 0.5). The diversion dam (RM 0.6) just upstream of the Hwy. 97 crossing is a full barrier to upstream fish passage. Gradients upstream of the diversion dam probably naturally preclude upstream fish passage further into the drainage. | | Steelhead | Chiliwist Creek | Okanogan
River | Potential/
Historic | 0.0 - 0.6 | K. Cooper (USFS); H. Bartlett
(WDFW); N. Wells (USFS); C.
Fisher (CCT). | Gradients beginning at approximately RM 0.6 probably naturally preclude upstream fish passage further into the drainage. | Historic distribution likely extended upstream to where flow and gradients become cumulatively prohibitive. | | Steelhead | Loup-Loup
Creek | Okanogan
River | Presumed | 0.0 - 0.03 | C. Fisher (CCT). | Dewatering in lower Loup Loup Creek during the summer (Entrix and Golder 2001); 200 feet upstream from the mouth (RM 0.03), perched, double culverts at Burdette Rd. in Mallott are full barriers; RM 0.1, the culvert at old State Hwy. 97 is a partial barrier. | Upper extent of fish passage into Loup Loup Creek is fully blocked about 200 feet upstream from the mouth at the Burdette Road stream crossing. The two side by side culverts are perched high above the creek bed. Dewatering in lower Loup Loup Creek during summer months also limits fish use. | | Steelhead | Loup-Loup
Creek | Okanogan
River | Potential/
Historic | 0.0 - 2.5 /
natural falls | C. Fisher (CCT); H. Bartlett
(WDFW), K. Williams (WDFW). | Natural falls at RM 2.5 | Natural falls at RM 2.5 represent the upper extent of upstream fish passage. Flows are also reduced downstream of the falls where there are also water withdrawals. | | Steelhead | Okanogan
River | Columbia
River | Known | Canada border | Busby et al. 1996 (NMFS Status
Review of Steelhead); Chapman
et al. 1994 (Status of Summer
Steelhead in the Mid-Columbia
River); S. Bickford (Douglas
County PUD). | No barriers. | Adult steelhead use of the Okanogan River is extensive however they are only present after water temperatures have decreased in September/October. The vast majority (99%) of the steelhead using the Okanogan River are hatchery fish. No wild steelhead have been confirmed spawning in the Okanogan River, only hatchery fish. Wild adult steelhead known to have overwintered in the Okanogan River system, in late winter/ early spring have moved out of the Okanogan system and into the Methow River drainage to spawn (S. Bickford, Douglas County PUD). | | Steelhead | Okanogan
River | Columbia
River | Potential/
Historic | Canada border | Busby et al. 1996 (NMFS Status
Review of Steelhead); Chapman
et al. 1994 (Status of Summer
Steelhead in the Mid-Columbia
River). | No barriers. | | | Steelhead | Omak Creek | Okanogan
River | Known | 0.0 - 11.0/ Haley
Creek Road | C. Fisher (CCT). | Mission Falls (RM 5.0) is a natural, partial barrier with a 12% gradient over 0.25 miles (C. Fisher, CCT). | | | Steelhead | Omak Creek | Okanogan
River | Presumed | 11.0 - 24.0 / two
miles upstream
of the Trail
Creek
confluence | C. Fisher (CCT). | Approximately 2 to 3 miles upstream of the Trail Crk confluence, gradient and flow cumulatively prevent upstream fish passage (C. Fisher, CCT). | The upper extent of fish passage for steelhead in naturally determined by increasing gradients and decreasing flows about 2 or 3 miles upstream of the Trail Creek confluence. The Trail Creek confluence is at RM 22.0 (Williams et al. 1975). | | Steelhead | Omak Creek | Okanogan
River | Potential/
Historic | 0.0 - 24.0/ two
miles upstream
of the Trail
Creek
confluence | C. Fisher (CCT). | Mission Falls (RM 5.0) is a natural, partial barrier with a 12% gradient over 0.25 miles (C. Fisher, CCT). Approximately 2 to 3 miles upstream of the Trail Crk confluence, gradient and flow cumulatively prevent upstream fish passage (C. Fisher, CCT). | The upper extent of fish passage for steelhead in naturally determined by increasing gradients and decreasing flows about 2 or 3 miles upstream of the Trail Creek confluence. The Trail Creek confluence is at RM 22.0 (Williams et al. 1975). | | SALMONID
SPECIES | STREAM
NAME | TRIBUTARY
TO: | FISH USE | EXTENT (RM) | SOURCE | BARRIERS | COMMENTS | |---------------------|------------------------|-------------------|------------------------|--|---|---|---| | Steelhead | Trail Creek | Omak Creek | Presumed | 0.0 - 1.0 | C. Fisher (CCT). | Partial culvert barrier just upstream of the mouth of Trail Creek at the State Hwy. 155 crossing (SSHEAR). Increasing gradient upstream of the lower one mile begin to naturally limit steelhead upstream passage (C. Fisher, CCT). | Lower 1.0 mile of Trail Creek is accessible. | | Steelhead | Stapaloop
Creek | Omak Creek | Presumed | 0.0 - 0.25 | C. Fisher (CCT). | State Hwy. 155 culvert is a full barrier (C. Fisher, CCT). | The State Hwy. 155 culvert crossing is identified as a partial barrier in the SSHEAR database. The culvert is undersized and perched about 30 inches above the water surface and should be a identified as a full barrier to upstream fish passage (C. Fisher, CCT). | | Steelhead | Stapaloop
Creek | Omak Creek | Potential/
Historic | 0.25 - 4.0 | C. Fisher (CCT). | Decreasing flows and increasing gradients preclude further upstream passage at RM 4.0 (C. Fisher, CCT). | Historic distribution likely extended upstream to where flow and gradients become cumulatively prohibitive. | | Steelhead | Ninemile Creek | Lake
Osoyoos | Known | 0.0 - 0.75 | H. Bartlett (WDFW). | | An adult steelhead was observed spawning. | | Steelhead | Salmon Creek | Okanogan
River | Known | 0.0 - 4.3
(Okanogan
Irrigation District
/ OID diversion
dam) | H. Bartlett (WDFW); B. Steele (WDFW). | events in high water years (H. Bartlett, WDFW); lack of flows downstream of | In the spring of 1985, 1986, 1994 (B. Steele, WDFW), and 1997 (H. Bartlett, WDFW), all high water years with overflow spill from the OID diversion dam at RM 4.3, steelhead were observed in the lower 4.3 miles of Salmon Creek (B. Steele, WDFW; H. Bartlett, WDFW). In April 2001, there was a planned spill to pass water downstream of the OID water diversion to facilitate the movement of steelhead smolts (planted by WDFW at the downstream side of the diversion dam) downstream to the Okanogan River. A dead steelhead was found that April 2001 at the Mill Street bridge crossing (approx. RM 0.5; H. Bartlett, WDFW). Steelhead use in Salmon Creek has not been documented by the Douglas County PUD using radio telemetry to date (S. Bickford, Douglas County PUD). A build-up of alluvium at the confluence of Salmon Creek and the Okanogan River currently prevents access by salmonids into Salmon Creek except in high water years during snowmelt events that result in uncontrolled spill at the OID diversion dam (H. Bartlett, WDFW; C. Fisher, CCT; N. Wells, USFS). In non-high water years, without spills from the OID diversion, beginning at RM 4.3 a | | Steelhead | Salmon Creek | Okanogan
River | Potential/
Historic | | C. Fisher (CCT); H. Bartlett
(WDFW); N. Wells (USFS). | 1910 is a full barrier to fish passage; no natural falls or gradients preclude | The historic start of the mainstem of Salmon Creek is about 15 miles upstream from the confluence of Salmon Creek and the Okanogan River where the North and West forks of Salmon Creek converged in what is now the Conconully Reservoir. Conconully Dam, constructed in 1910, presently precludes fish passage upstream into the Salmon Creek drainage at RM 15. | | Steelhead | N. Fk. Salmon
Creek | Okanogan
River | Potential/
Historic | 0.0 - 8.0 / first
natural barrier | Entrix and Golder 2001; H.
Bartlett (WDFW); C. Fisher
(CCT); N. Wells (USFS). | · | Before the construction of Conconully Dam, anadromous fish may have utilized the North Fork Salmon Creek for two or three miles above the dam site (Entrix and Golder 2001). During the mapping exercise, participants suggested the upper extent for steelhead use be located at the first natural barrier identified. The first natural barrier indicated currently is from the USFS barriers database. No other information on the barrier was available at the time of mapping. | | Steelhead | W. Fk. Salmon
Creek | Okanogan
River | Potential/
Historic | | Entrix and Golder 2001; H.
Bartlett (WDFW); C. Fisher
(CCT); N. Wells (USFS). | | Before the construction of Conconully Dam, anadromous fish may have utilized the West Fork Salmon Creek for two or three miles above the dam site (Entrix and Golder 2001). During the mapping exercise, participants suggested the upper extent for steelhead use be located at the first natural barrier identified. The first natural barrier indicated currently is from the USFS barriers database. No other information on the barrier was available at the time of mapping. | | SALMONID
SPECIES | STREAM
NAME | TRIBUTARY
TO: | FISH USE | EXTENT (RM) | SOURCE | BARRIERS | COMMENTS | |-------------------------|------------------------|-------------------|------------------------|------------------------------------|---|--|--| | Steelhead | S. Fk. Salmon
Creek | Okanogan
River | Potential/
Historic | 0.0 - 2.0 | Entrix and Golder 2001; H.
Bartlett (WDFW); C. Fisher
(CCT); N. Wells (USFS). | No natural barrier has been identified on
S. Fk. Salmon Creek. | Before the construction of Conconully Dam, anadromous fish may have utilized the South Fork Salmon Creek for two or three miles above the dam site (Entrix and Golder 2001). During the mapping exercise, participants suggested the upper extent for steelhead use be located at the first natural barrier identified. No natural barrier has been identified on the South Fork Salmon Creek so the upper extent was mapped approximately two miles upstream of the Conconully dam site as per the Entrix and Golder 2001 report. | | Steelhead | Similkameen
River | Okanogan
River | Known | 0.0 - 8.8/ Enloe
Dam | Entrix and Golder 2001; H.
Bartlett (WDFW); C. Fisher
(CCT); N. Wells (USFS). | Enloe Dam (RM 8.8). | | | Steelhead | Similkameen
River | Okanogan
River | Potential/
Historic | | Entrix and Golder 2001; H.
Bartlett (WDFW); C. Fisher
(CCT); N. Wells (USFS). | Enloe Falls (RM 8.8). | Historic distribution likely extended upstream to prohibitive gradients. | | Steelhead | Siwash Creek | Okanogan
River | Presumed | 0.0 - 1.5 | K. Cooper (USFS). | Low flows/dewatering. | From July 10 through Nov. 30, 2000, Siwash Creek was completely dry downstream of the Okanogan Conservation District water quality monitoring station (RM?). Flows in Siwash Creek are strongly influenced by water year conditions and withdrawals (K. Cooper, USFS). | | Steelhead | Siwash Creek | Okanogan
River | Potential/
Historic | 0.0 - 1.5 | CREP mapping. | Low flows/dewatering. | From July 10 through Nov. 30, 2000, Siwash Creek was completely dry downstream of the Okanogan Conservation District water quality monitoring station (RM?). Flows in Siwash Creek are strongly influenced by water year conditions and withdrawals (K. Cooper, USFS). | | Steelhead | Tonasket Creek | Okanogan
River | Known | 0.0 - 0.75 | T. Scott (O-TID); D. Buckmiller (USFS); H. Bartlett (WDFW); C. Fisher (CCT). | | Observed one female steelhead immediately upstream of the Chesaw/Molson Cutoff Rd. | | Steelhead | Tonasket Creek | Okanogan
River | Presumed | 0.75 - 1.25 | T. Scott (O-TID); D. Buckmiller
(USFS); H. Bartlett (WDFW); C.
Fisher (CCT). | At RM 1.0 a falls/cascade of large metal debris may restrict upstream fish passage (N. Wells, T. Scott). Barrier status requires field confirmation. | | | Steelhead | Tonasket Creek | Okanogan
River | Potential/
Historic | 0.0 - 1.25 | T. Scott (O-TID); D. Buckmiller
(USFS); H. Bartlett (WDFW); C.
Fisher (CCT). | Gradients and bedrock likely naturally restrict upstream fish passage beginning at about RM 1.25. | Historic distribution likely extended upstream to where flow and gradients become cumulatively prohibitive. | | Steelhead | Tunk Creek | Okanogan
River | Known | 0.0 - 0.5
(McAllister
Falls) | Feddersen, L. (CCT). | At RM 0.5, McAllister Falls is a natural barrier. | | | Steelhead | Tunk Creek | Okanogan
River | Potential/
Historic | 0.0 - 0.5
(McAllister
Falls) | Feddersen, L. (CCT). | At RM 0.5, McAllister Falls is a natural barrier. | | | Steelhead | Whitestone
Creek | Okanogan
River | Presumed | | N. Wells (USFS). | At RM 0.1, the River Loop Rd. culvert is a partial barrier. | | | Steelhead | Whitestone
Creek | Okanogan
River | Potential/
Historic | 0.0 - 0.75 | N. Wells (USFS). | | Historic distribution likely upstream to where flow and gradients become cumulatively prohibitive. | | Summer/
Fall Chinook | Okanogan
River | Columbia
River | Known | | Myers et al. 1998 (NMFS
Chinook Status Review rpt.) | No barriers. | Small populations (abundance estimated at 100 - 1,000) of summer chinook salmon spawn in the Okanogan River. | | SALMONID
SPECIES | STREAM
NAME | TRIBUTARY
TO: | FISH USE | EXTENT (RM) | SOURCE | BARRIERS | COMMENTS | |-------------------------|----------------------|-------------------|------------------------|---|---|--|--| | Summer/
Fall Chinook | Okanogan
River | Columbia
River | Potential/
Historic | Canada border | Chapman et al. 1994a (Status of
Summer/Fall Chinook in the mid-
Columbia Region) | No barriers. | | | Summer/
Fall Chinook | River | River | Known | Enloe Dam | Chinook Status Review rpt.) | , , | Spawning occurs up to Enloe Dam (RM 8.8). | | Summer/
Fall Chinook | | | Potential/
Historic | | Myers et al. 1998 (NMFS
Chinook Status Review rpt.). | Enloe Falls (RM 8.8). | Access upstream to Enloe Falls historically. | | Spring
Chinook | Omak Creek | Okanogan
River | Potential/
Historic | | | Mission Falls, a natural barrier to spring chinook at RM 5.0. | | | | Okanogan
River | Columbia
River | Potential/
Historic | (Canada | Chapman et al. 1995a (Status of
Spring Chinook Salmon in the
Mid-Columbia). | No barriers. | | | Spring
Chinook | Salmon Creek | | Potential/
Historic | of W. and N.
forks of Salmon
Creek) | (USFS); N. Wells (USFS); K.
Williams (WDFW); Chapman et
al. 1995a (Status of Spring
Chinook Salmon in the Mid- | Build-up of alluvium at the mouth of
Salmon Creek; lack of flows
downstream of the OID diversion dam
at RM 4.3; Conconully Dam (RM 15); no
natural falls or prohibitive gradients up
to Conconully Dam. | Potential/ Historic use of Salmon Creek mainstem for rearing upstream to the Conconully Dam barrier. The North Fork and West Fork of Salmon Creek converged about 15 miles upstream from the confluence of Salmon Creek and the Okanogan River, at what is now the Conconully Reservoir. Conconully Dam, constructed in 1910, presently precludes fish passage upstream into the Salmon Creek drainage at RM 15. | | - P9 | Similkameen
River | Okanogan
River | Potential/
Historic | | H. Bartlett (WDFW); K. Cooper
(USFS); N. Wells (USFS). | Enloe Falls (RM 8.8). | |